ABSTRACT

Molycorp Inc. owns and operates a large tailings facility located near the town of Questa, New Mexico. Over the last 33 years nearly 100 million tons of tailings from the Questa Molybdenum Mine have been discharged into this facility covering a total surface area of about 260 ha (640 acres) (as of 1997). Molycorp has proposed to cover the tailings with locally available alluvial material (silty gravel) after final closure of the facility. This soil layer would prevent erosion of the tailings, provide a growth medium for re-vegetation and, in conjunction with the underlying tailings, represent a water storage (or "store-and-release") cover that would reduce infiltration into the deeper tailings profile. Molycorp has implemented a storage cover test plot study at the Questa tailings facility to evaluate net infiltration through the proposed water storage cover (RGC, 2000a). The storage cover test plot study was initiated to collect site-specific data of cover performance for the purpose of final design of the water storage cover. Specifically, the test plot study was designed to meet the following objectives:

- measure climatic conditions at the site;
- measure in-situ material properties (characteristic curves); and
- calibrate a soil-atmosphere model in order to predict net infiltration.

It is important to recognize that the primary objective of the test plot study is not to measure cover fluxes per se but instead, to calibrate a soil-atmosphere model for known (measured) boundary conditions. The ultimate goal is to use the calibrated soil-atmosphere model to predict with a high degree of confidence the...
performance of the storage cover for conditions relevant to final closure (i.e. deep, unsaturated tailings profile; mature vegetation; range of climatic conditions). These final closure conditions cannot, of themselves, be duplicated in a field trial of only a few years, but instead have to be simulated.

Figure 1. Location map of Questa tailings facility.

SITE DESCRIPTION

The Questa tailings facility is located near the town of Questa in Northern New Mexico (Figure 1). The tailings facility lies in an alluvial plain at an elevation of approximately 7600 feet a.m.s.l., bordered by the Sangre de Cristo Mountains to the east and the Guadalupe Mountains to the west. The tailings were impounded in two deeply incised valleys (so-called “arroyos”) behind two major earth fill dams (Dams 1/1C and Dam 4, respectively). Currently, tailings are discharged behind the smaller Dam 5 in the northwestern corner of the facility.

Detailed physical and geochemical characterization of the Questa tailings was carried out as part of the development of the revised closure plan for this facility (RGC, 1998). Briefly, the Questa tailings are geochemically similar mixtures of aplite and andesite tailings with low-moderate sulfide content (0.5–1.5% pyrite). The predominantly andesitic tailings have higher sulfide-sulfur contents and a higher potential to generate acid than the slimes tailings or aplite tailings. Despite the oxidation potential of sulfide minerals, the Questa tailings are currently not acid generating. The surface tailings, which have been most susceptible to oxidation processes, have remained grey in color and are consistently circumneutral with respect to paste pH. The field and laboratory data suggest that the buffering capacity of the tailings is sufficient to maintain circumneutral pH in the tailings pore water (Wels et al., 2000).
From a physical perspective the Questa tailings can be subdivided into three classes:

i. coarse tailings with <50% fines content (where fines constitute silt and clay sized particles with a
grain diameter smaller than 0.075 mm (# 200 mesh));

ii. intermediate tailings with 50%< fines content <80%; and

iii. fine tailings with >80% fines.

The coarse tailings dominate with about 2/3 of the total surface area. The fine tailings (or slimes) comprise
only about 12% of the present tailings surface area (Figure 1).

The climate of the study area is semi-arid. Annual precipitation at near-by Cerro averages about 310 mm/yr
(12.2 inches per year) with much of this precipitation occurring as summer thundershowers (43% of total
precipitation occurs from July to September). The summers are moderately warm with maximum daily
temperatures around 27°C (80°F). The winters are long with temperatures dropping below freezing almost
every night from October through to April. However, typically clear skies bring sunshine during most days
with temperatures rising to above the freezing point. During the winter much of the precipitation falls as
snow. Nevertheless, a significant snow pack rarely develops due to intermittent snow melt and/or
sublimation. Based on frost data collected by the U.S. Weather Bureau at Cerro a growing season of 120
days is average for the study area. As expected for this semi-arid climate, the potential evaporation rates far
exceed precipitation rates during all months on record. The annual pan evaporation is estimated to be about
65-70 inches per year.

DESIGN OF TEST PLOT STUDY

The test plot study was designed to evaluate factors controlling the performance of the cover and the net
infiltration to the tailings, i.e. material properties, climate conditions and cover thickness (RGC, 2000a). A
total of three test plots were constructed in the beach area between Dam 1 and Dam 1C of the Questa
tailings facility (Figure 1). This tailings area has been covered for about 25 years, which allowed the
establishment of a mature grass/shrub vegetation on the cover material. An initial reconnaissance survey
indicated that the interim cover placed historically in this area was quite variable (ranging in thickness from
9” to greater than 24”). The test plot location finally selected (in the eastern portion, see Figure 1) was
deemed most representative of the requirements for the deep in-situ test plot TP-1, i.e. an existing nine inch
cover with mature grass/brush vegetation.

The three test plots were constructed and instrumented to measure the performance of three different
combinations of cover thickness and vegetation development:

Test Plot #1: Existing 9” thick alluvial cover with mature grass/shrub vegetation overlying in-
situ sandy tailings (very deep tailings profile);

Test Plot #2: 9” thick alluvial cover with no vegetation overlying back-filled sandy tailings
(~2.5 m deep tailings profile); and

Test Plot #3: 24” thick alluvial cover with no vegetation overlying back-filled sandy tailings
(~2.5 m deep tailings profile).

Test plot #1 is most representative of post-closure steady-state conditions, i.e. with mature vegetation
established on the alluvial cover overlying undisturbed hydraulically placed tailings. This test plot is
designed as an open system, i.e. the monitoring instrumentation was installed into the existing cover and
tailings profile (without prior excavation). Any excavation of the cover and tailings profile would destroy
the root system of the vegetation, which is considered a vital component of this cover system, as well as the
‘natural’ soil structure and density of the hydraulically placed tailings. Test plot #1 will be used to calibrate
the soil-atmosphere model (including effects of vegetation on evapotranspiration) against measured
changes in soil moisture and soil suction over time. The calibrated soil-atmosphere model of test plot #1
will be used to predict the net flux through a mature cover system for post-closure steady-state conditions.

Test plots #2 and #3 represent free-draining “lysimeter plots”, in which the rate of net percolation through
the cover and shallow tailings profile is monitored directly and leachate is collected at the base of the
lysimeter. Test plots #2 and #3 will be used to assess the influence of cover thickness on net percolation
(initially without the influence of transpiration by plants). Both test plots will allow calibration of the soil-
atmosphere model not only against observed suction/moisture content in the profile but also against measured net fluxes observed discharging at the base of the lysimeters.

Two sets of sensors were installed in the three test plot profiles to measure the in-situ soil temperature, matric suction and volumetric moisture content required for soil-atmosphere model calibration. The in-situ temperature and soil matric suction is measured using a thermal conductivity type sensor (Campbell Scientific model 229). The sensor consists of a thermocouple, which measures in-situ soil temperature. During a suction measurement the sensor is briefly heated and subsequently records the heat dissipation within the ceramic cup of the sensor, which can be converted into matric suction using a laboratory calibration curve.

The volumetric moisture content is measured indirectly using the capacitor-type sensors distributed by SENTEK Sensor Technologies, Adelaide, Australia. The capacitance of a soil increases considerably with an increase in the number of soil water molecules, which are free to relax as their electric dipoles respond to the capacitor sensors field reversal. For the tailings test plots the EnviroSCAN system of SENTEK was used. In this system the capacitor sensors are mounted on a track and installed into the soil profile within a 50 mm diameter PVC housing (“access tube”). The sensors are connected to the EnviroSCAN data logger, which controls data acquisition and presentation.

CONSTRUCTION AND INSTRUMENTATION

Test Plot Construction

Figure 2 shows the as-built drawings for test plots TP-1, TP-2 and TP-3 illustrating lysimeter dimensions, in situ testing results and instrumentation. The figure also shows details of the drain discharge system from the lysimeter to the manhole (for TP-2). At each test plot site, a footprint area of approximately 15ft×15ft was staked out and the tailings excavated to a total depth of about 8 ft. The excavated material was then stockpiled for later backfilling (for test plots TP-2 and TP-3 only). The mine rock profile encountered in the excavation was photographed and logged with respect to material type, texture, color, and moisture content. Paste pH and electrical conductivity measurements were taken at representative depths of the soil profile. In addition, representative samples were collected for calibration of the SENTEK moisture content sensors and for further physical and geochemical testing. In situ density and moisture contents were measured at representative depths during excavation (typically every 1-3 ft and/or where a change in material properties was observed during excavation).

The construction and instrumentation varied between the deep, “undisturbed” profile (test plot TP-1) and the closed lysimeters (test plots TP-2 and TP-3). For test plot TP-1, an access ditch was excavated along one side of the test plot to a depth of approximately 9ft. The access ditch was used to determine in-situ material properties, collect representative samples, and to provide access to the revegetated, undisturbed tailings profile for lateral installation of the suction-temperature sensors (Figure 2). The suction sensors were installed progressively from bottom to top during backfilling of the excavation trench. First, a pilot hole was drilled with a T-bar drill and then the suction sensor was pushed into the slightly undersized drill hole using a specifically designed installation tool to ensure good soil/sensor contact. The volumetric moisture content sensors were installed at the perimeter of test plot TP-1. A 3.5m long PVC access tube (50mm diameter) was pounded into the soil profile using a sledge hammer. The installation was facilitated by using a driving shoe at the base and a protective end cap at the top. Once in place, the soil and tailings present in the access tube were removed using a hand auger and cleaning tool, and the volumetric water content sensors inserted into the access tube (mounted on a rail).

Thick walled (¾ inch) HDPE tanks with a diameter of 94 inches and a height of 92 inches were used for construction of the lysimeter test plots TP-2 and TP-3. The tank was lowered into the excavation and backfilled with tailings stockpiled in 3-4 piles according to material properties (Figure 2). The tailings were lowered into the lysimeter using the backhoe, spread out by hand using a shovel and compacted by foot. Nuclear densometer readings at representative depths indicated that this backfill method resulted in compaction values very similar to those observed during excavation of the tailings (Figure 2). The resulting moisture content in the backfilled tailings was also very similar to the average moisture conditions observed during excavation (Figure 2).
Figure 2. As-built drawings for test plot lysimeters TP-1, 2, and 3.
Figure 2 cont’d. As-built drawings of drain discharge system (for TP-2).

A 50mm diameter PVC tube (for access of the SENTEK volumetric moisture content sensors) was placed in the center of the lysimeter and the tank backfilled in layers of 1-2ft with in-situ density and moisture content testing at designated depths (Figure 2). At the appropriate depths the suction-temperature sensors were laid out and carefully buried in the backfilled tailings. The area immediately around the PVC access tube was compacted by hand to achieve a good seal. In addition, an annulus bypass ring was installed around the PVC access tube near the surface of the alluvial cover to prevent preferential channeling into the lysimeter.

A small trench was dug on one side of the excavation holding the lysimeter once the lysimeter was backfilled with tailings back to surface in order to install the discharge pipe, which connects the drain at the base of the lysimeter to a manhole (Figure 2). The discharge pipe was laid out on a 3% slope to allow gravity drainage from the lysimeter. A 2-inch elbow at the end of the discharge pipe directs any drain flow downward into a tipping bucket flow gauge and a sampling bucket.

After backfilling of the lysimeter and construction of the discharge/manhole system the alluvial cover material was placed in a single lift without compaction using the backhoe. The alluvial cover was placed over a foot print area of about 20ftx20ft, i.e. about eight times the foot print area of the lysimeter in order to minimize boundary effects. The alluvial material used for cover construction on the lysimeter test plots (i.e. TP-2 and TP-3) was taken from a local (small) borrow pit with alluvial soil deemed representative of the alluvial soils proposed for final cover of the tailings facility (see Figure 1 for location of borrow pit for test plot study). Several samples of this alluvial cover material were taken for calibration of the EnviroSCAN sensors and future analyses in the laboratory.

A detailed description of the data acquisition system for the test plots is provided in RGC (2000b). Briefly, the soil temperature/suction sensors and the tipping bucket flow gauges and volumetric moisture content sensors are connected to separate data logger systems (Campbell Scientific Inc. and Sentek, respectively). Soil temperature/suction and water content measurements are taken automatically every two hours. The tipping bucket flow gauge records the discharge from the test plots (TP-2 and TP-3 only) on an event basis.

Met Station

A fully automated meteorological station was constructed at the test plot area to properly evaluate atmospheric boundary conditions for future numerical model calibration. The weather station consists of an all-season tipping bucket rain gauge, relative humidity/temperature probe, wind sensor, and net radiometer. All sensors were mounted on a 10 foot tripod anchored to the surface using anchors and guy wires. The sensors were arranged to measure climate parameters at a nominal height of 6 ft above ground surface. In addition, a fully automated Bowen Ratio System (BRS) was installed for measuring actual evapotranspiration. The Bowen Ratio is the ratio of sensible heat loss from the surface to the atmosphere.
and the energy utilized for evaporation. The latter term is calculated based on measurements of net radiation, total soil heat flux, and the gradient of temperature and vapor pressure above the surface.

Material Testing

Representative samples of tailings and alluvial cover material were taken during construction of the test plots and submitted for laboratory testing to determine hydraulic properties and soil water characteristic curves (see RGC, 2000b for details). The geotechnical characterization includes grain size analysis, moisture content, standard proctor compaction, permeability, and soil water characteristics (i.e. moisture retention). Figure 3 shows the particle size distribution (PSD) of the various tailings and alluvial cover samples taken from the three test plots. The alluvial cover material represents a fairly well-graded silty/clayey gravel (GM-GC) with a fines content ranging from 7.8 to 10.9%. In contrast, the tailings encountered at the test plots represent a poorly graded silty sand (SM) with a fines content ranging from 12.4 to 48.2%. Hence the cover performance test plot study is most representative for the coarser beach areas which cover about 2/3 of the total tailings area at the Questa tailings facility (RGC, 1998). Based on a review of the PSD data pertinent samples have been selected for standard proctor compaction, permeability, and soil water characteristics testing (RGC, in progress).

Figure 3. Particle Size Distributions for test plot samples.

INITIAL MONITORING RESULTS

Climate Data

Figure 4 shows time trends of air temperature and relative humidity (daily min/max) as well as daily precipitation for the first five months of monitoring (August 9, 2000 to January 6, 2001). Table 1 provides summary climate statistics for this period. The amount of total precipitation over the 5-month period (6.1 inches) was only slightly above the long-term average for this period (5.9 inches). The majority of precipitation fell in mid-August and October to mid-November. The air temperature and relative humidity showed significant daily variations characteristic for this semi-arid climate. From mid-October onward, air temperature dropped consistently below the freezing point during the night while rising well above the freezing point during the day.
Figure 4: Time trends of temperature and relative humidity (daily MIN/MAX) and precipitation for the five months monitoring period.

Table 1: Summary climate statistics for the tailings station for period August 9, 2000 to January 6, 20001 (based on daily average values).

<table>
<thead>
<tr>
<th>Met Station</th>
<th>Average Daily Air Temperature</th>
<th>Average Daily RH</th>
<th>Average Daily Wind speed</th>
<th>Total Daily Net Radiation</th>
<th>Cumulative Precipitation</th>
<th>Cumulative Potential Evapotranspiration</th>
</tr>
</thead>
<tbody>
<tr>
<td>TP1.2.3</td>
<td>43.9</td>
<td>55.2</td>
<td>2.4</td>
<td>3.65</td>
<td>6.1</td>
<td>14.04</td>
</tr>
<tr>
<td>Min</td>
<td>14.7</td>
<td>23.5</td>
<td>0.4</td>
<td>-2.74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td>75.9</td>
<td>97.6</td>
<td>4.7</td>
<td>14.63</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Test Plot Response

Figure 5 shows the time trends of volumetric water content for the deep, undisturbed test plot profile (TP-1). The daily precipitation is also shown for comparison. The first significant wetting occurred in response to heavy precipitation in mid-August when 1.9 inches was recorded over 2 days. The cover/tailings profile the volumetric moisture contents exhibited a rapid increase (during the rainfall period) followed by a gradual decline due to subsequent evapotranspiration and drainage. Similar wetting/drying patterns were observed in subsequent precipitation events (Figure 4). Note that infiltration during this five-month period was limited to the near-surface material. The deepest moisture content sensor recording any appreciable increase in moisture content was located at a depth of 27 inches (Figure 4). The deeper tailings profile did not show any change in moisture content throughout this period.

Figure 5: Time trend of Volumetric Water Content for TP-1 and associated Precipitation

Figure 6. Time trends of soil suction for test plot TP-1
Figure 6 shows the time trends of soil suction for the deep, undisturbed test plot profile (TP-1). Note that high suction values indicate dry conditions and low suction values indicate wet conditions. The suction values declined sharply in the near-surface material (to a depth of approximately 24 inches) in response to heavy precipitation, and then gradually increased due to subsequent evapotranspiration and drainage. In other words, soil suction is inversely correlated with volumetric moisture content (c. Figures 4 and 5). Note that the tailings remained unsaturated (suction >> 1 kPa, e.g. at 16 inches depth) whereas the alluvial cover material approaches saturation conditions (suction <1 kPa, e.g. at 6 inches depth) during the heavy precipitation experienced in August (Figure 5).

Figure 7 compares suction and moisture content profiles in all three test plots during the period August 10 – September 14, 2000, i.e. the period bracketing the first significant infiltration event (c. Figures 4 and 5). The depth of the alluvial cover is shown in these profiles for comparison. The suction and moisture content profiles are generally similar in all three test plots. The heavy precipitation on August 18-19 resulted in a wetting of the cover/tailings profile to a depth of approximately 30-40 inches. The volumetric moisture content in the alluvial cover was generally significantly lower than in the underlying tailings despite similar, if not lower, suction values (Figure 6). This is a result of the much coarser texture, and hence lower porosity of the cover relative to the tailings (Figure 3). The lower porosity of the alluvial cover also results in a deeper wetting front for the case of a 24 inch cover (up to 40 inches wetting in TP-3) compared to the case of a 9 inch cover (~30 inches wetting in TPs 2 & 3). These observations highlight the fact that the tailings have a much higher water storage capacity than the alluvial cover, at the suction measured in the field.

A comparison of the suction and moisture content responses in test plots TP-1 and TP-2 illustrates the influence of vegetation on cover performance. The presence of a mature grass and brush vegetation in test plot TP-1 resulted in increased drying of the alluvial cover and the underlying tailings, as compared to the barren test plot TP-2. This is illustrated by higher suctions and lower moisture content readings following the rainfall events (Figure 6). These observations support the contention that the upper layers of the tailings are part of the active root zone and can function as an important component of a “store-and-release” cover (c. RGC, 1998).

The volumetric moisture content and suction values showed very little, if any, variation at depths greater than approximately 40-50 inches below ground surface throughout the first five months of monitoring. These results are consistent with observations in the manholes of the closed lysimeter test plots TP-2 and TP-3, where no discharge was recorded for the first five months of monitoring. It may take as much as 1-3 years (or more), based on the observed rates of net infiltration, before there will be any measurable discharge from the base of the lysimeters (at a depth of ~110-130 inches).

The volumetric moisture content profiles can be integrated to estimate the volume of water stored in the cover/tailings profile at any given time. A comparison of volumetric moisture content profiles over time then provides an estimate of the amount of water stored or released over a given time period. Using this technique, the total amount of water stored during the heavy precipitation of August 18-19 was estimated to be 1.9-2.0 inches in the three test plots. This estimate is similar to the observed precipitation during this period (1.9 inches), suggesting that losses due to surface runoff and/or evapotranspiration were negligible. All three cover/tailings profiles accrued significant moisture losses in the four weeks following this heavy precipitation as a result of evapotranspiration. The highest loss (1.05 inches) was observed in the undisturbed, vegetated test plot TP-1. The estimated losses for the two barren lysimeter test plots TP-2 and TP-3 were 0.50 and 0.64 inches, respectively. These preliminary results would suggest that the performance of the store-and-release cover is much more influenced by vegetation than by the thickness of the alluvial cover.
Figure 7: Suction and Volumetric Water Content profiles for TP-1, TP-2 and TP-3.
CONCLUSIONS

This paper describes the design and installation/instrumentation of cover performance test plots designed to study the performance of a store-and-release cover for final closure of the Questa tailings facility. Initial results for the first five months of monitoring suggest that a 9” thick alluvial cover with mature vegetation is more effective in reducing net infiltration than either a 9 inch or 24 inch thick alluvial cover without vegetation. Water balance calculations for a heavy precipitation event (1.9 inches) in August suggested that up to 1.05 inches or 55% of incoming precipitation was released back to the atmosphere via evapotranspiration. The field data support earlier modeling results, which suggested that the tailings are an important component of the store-and-release cover (RGC, 1997). The high porosity and good moisture retention capacity of the tailings results in storage of incoming precipitation during wet periods which can be removed back to the atmosphere by evapotranspiration during drier periods. The presence of a mature grass/shrub vegetation on top of a 9 inch alluvial cover appeared to improve the removal of moisture from the cover and underlying tailings profile significantly.

Modeling work is currently in progress to calibrate the soil-atmosphere model SoilCover (Geoanalysis 2000 Ltd., 2000), using the observed test plot data. The hydraulic properties of the tailing profile (porosity, soil water characteristic curve, Ksat) will be modified during calibration until a good fit with the temporal trends of soil suction, volumetric moisture contents and measured outflow from the lysimeter is obtained. Once calibrated, this soil atmosphere model can be used to assess the influence of cover thickness and vegetation on cover performance for a range of climate conditions.

ACKNOWLEDGEMENTS

The test plot study was funded by Molycorp Inc. and could only have been completed with their large and dedicated commitment to understanding the physical and geochemical processes that are active on the Questa mine site. The authors of the paper would like to acknowledge the extensive contributions by both Molycorp personnel, in particular Anne Wagner and Geyza Lorinczi and Dave Shoemaker, and the constructive comments during the development of work plans from New Mexico Mining and Minerals Division and Environmental Department personnel.

REFERENCES

